If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (W3 + 3s)(st + -7) = 0 Reorder the terms: (W3 + 3s)(-7 + st) = 0 Multiply (W3 + 3s) * (-7 + st) (W3(-7 + st) + 3s * (-7 + st)) = 0 ((-7 * W3 + st * W3) + 3s * (-7 + st)) = 0 ((-7W3 + stW3) + 3s * (-7 + st)) = 0 (-7W3 + stW3 + (-7 * 3s + st * 3s)) = 0 (-7W3 + stW3 + (-21s + 3s2t)) = 0 Reorder the terms: (-7W3 + -21s + stW3 + 3s2t) = 0 (-7W3 + -21s + stW3 + 3s2t) = 0 Solving -7W3 + -21s + stW3 + 3s2t = 0 Solving for variable 'W'. Move all terms containing W to the left, all other terms to the right. Add '21s' to each side of the equation. -7W3 + -21s + stW3 + 21s + 3s2t = 0 + 21s Reorder the terms: -7W3 + -21s + 21s + stW3 + 3s2t = 0 + 21s Combine like terms: -21s + 21s = 0 -7W3 + 0 + stW3 + 3s2t = 0 + 21s -7W3 + stW3 + 3s2t = 0 + 21s Remove the zero: -7W3 + stW3 + 3s2t = 21s Add '-3s2t' to each side of the equation. -7W3 + stW3 + 3s2t + -3s2t = 21s + -3s2t Combine like terms: 3s2t + -3s2t = 0 -7W3 + stW3 + 0 = 21s + -3s2t -7W3 + stW3 = 21s + -3s2t Reorder the terms: -7W3 + -21s + stW3 + 3s2t = 21s + -3s2t + -21s + 3s2t Reorder the terms: -7W3 + -21s + stW3 + 3s2t = 21s + -21s + -3s2t + 3s2t Combine like terms: 21s + -21s = 0 -7W3 + -21s + stW3 + 3s2t = 0 + -3s2t + 3s2t -7W3 + -21s + stW3 + 3s2t = -3s2t + 3s2t Combine like terms: -3s2t + 3s2t = 0 -7W3 + -21s + stW3 + 3s2t = 0 The solution to this equation could not be determined.
| 2y-(3+y)=8 | | 6(3/4) | | ((8/4))6)x2 | | -58=10x+2 | | 8-4/x=2+3/x | | 5X-17=-8+8X | | 6N-11=-18+7N | | 2(x+2)-7=5-4x | | 2(5r+60)=20(2r-18) | | A+(A-2)=(A+4)-9+2 | | F(x)=1/3x-5 | | 25d^2-9=0 | | 5r+6*2=2r-18*20 | | X+(1.35x)=384 | | x^3-8x^2-6x+1=0 | | 30x^3+22x^2+4x=0 | | (1.6)^6/(2.56)^7 | | 2x/11(-7)=6 | | 5/6a-7/8a | | f(x)=4x-4/3x^3 | | ab-c=0 | | 1-3(4-2d)=3-d | | -56=6x+10 | | x+143+2x+152+116+125+140+139=840 | | (-3/5)^0= | | 140=15+5x | | ((a-b)/(a^2b-a^3))-((ab^2-b^3)/(a^2b)) | | 13-10k=-77 | | (6y-7z)(6y+7z)= | | 10.00=0.5x+5.31 | | -9x+2y=7 | | 7.35=0.5x+5.31 |